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E-mail: heinrich@ing.math.uni-essen.de

Received December 2, 1997; revised June 23, 1998

We consider the Poisson problem on a segment of the unit disc and on triangles.
On the segment we transform the Poisson problem by means of polar coordinates. In
these new coordinates we have a problem in a rectangle which can easily be mapped
onto the square. Here standard Chebyshev collocation techniques can be applied.
Then the segment is mapped onto a triangle where the same spectral scheme may
be used. By numerical tests we observed the expected high spectral accuracy. Due
to the corner singularity a singular behaviour of the solution can be expected. Here
we improved the accuracy by auxiliary mapping techniques. Further, it is shown that
finite difference preconditioning can be successfully applied in order to construct an
efficient iterative solver. Finally, a domain decomposition technique is applied to the
patching of a rectangular and a triangular element.c© 1998 Academic Press

Key Words:spectral; collocation; triangles; auxiliary mapping; preconditioning;
domain decomposition.

1. INTRODUCTION

It is well known that spectral collocation schemes can be successfully applied to ellip-
tic problems in rectangular domains. For smooth solutions the high (exponential) spectral
accuracy can be achieved. Here we are interested in spectral collocation on triangular el-
ements. For thep- and theh-p-version of the finite element method the optimal nodes
for quadrature are investigated by Babuˇskaet al. [1, 3–5]. These techniques are limited to
finite element discretizations. For spectral schemes it is not a priori clear which collocation
nodes have to be chosen. It is not possible to employ the standard Gauss–Lobatto nodes
in both directions. Hesthaven [12] presented optimal nodal sets based on an electrostatic
interpretation of the nodes. Gottlieb and Hesthaven [9] studied stable spectral schemes for
conservation laws on triangles with unstructured grids. Sherwin and Karniadakis [14] pro-
posed an unstructured spectral element method on triangular and tetrahedral subdomains,
where a special spectral basis (see Dubiner [7]) has been employed. Wingateet al. [15–17]
consider spectral element methods on triangles for geophysical fluid dynamics problems
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and the shallow water equations. Here special function spaces for triangular spectral ele-
ments are introduced. Modifications of the classical modified Dubiner’s basis are proposed,
called an “interior-orthogonal” basis. The new basis retains the most important proper-
ties of the Dubiner’s basis, but gives a weight matrix which is simpler. Here we follow
a completely different approach where the standard spectral Cheyshev basis is used. We
propose a mapping technique where the Poisson problem is first mapped onto a segment
of the unit disc. For this purpose polar coordinates are used. In polar coordinates we have
a rectangular domain in(r, θ)∈Äθ1 = (0, 1)× (0, θ1) for 0<θ1≤ 2π . Then for 0<θ1<π

the circular boundary of the segment is mapped onto an edge of the triangle. This means
that nowr depends onθ , i.e., r = r (θ). In Äθ1 we discretize by means of the standard
Chebyshev collocation scheme. Hence we approximate by Chebyshev polynomials and
collocation is performed at the Chebyshev Gauss–Lobatto nodes in(r, θ). Homogeneous
Dirichlet boundary conditions are enforced on the boundary∂Äθ1. It is numerically shown
that for smooth solutions the high spectral accuracy can be achieved. However, the geo-
metric singularity often gives rise to singular solutions. Here we investigated auxiliary
mapping techniques to smooth the singularity. This approach was intensively studied by
Pathria and Karniadakis [13] for spectral elements. The problem is mapped fromÄθ1

to Äπ so that the corner is eliminated. But now the singularity is caused by the singu-
lar behaviour of the right-hand side. Nevertheless forθ1>π/

√
2 the singularity is now

much weaker, which leads to an improvement in accuracy. This is confirmed by numer-
ical experiments. Finally we study finite difference preconditioning. It is shown that the
condition number becomes independent ofN. This can be used in constructing efficient
iterative solvers. For more complicated geometries, where rectangular and triangular subdo-
mains match, we propose a domain decomposition technique. Here a Dirichlet–Neumann
interface relaxation (see Funaro, Quarteroni, and Zanolli [8]) is iterated until continuity
of normal derivatives is achieved. Numerical results demonstrate the efficiency of our
treatment.

2. TRANSFORMATION OF TRIANGULAR ELEMENTS

We consider the Poisson problem in a segment, i.e.,

1u = f inÄθ1, (1)

u = 0 on∂Äθ1, (2)

where f denotes a given force and

Äθ1 = {(x, y) = r (cosθ, sinθ) : 0< r < 1, 0< θ < θ1}

denotes a segment with angleθ1. As usual∂Äθ1 denotes the boundary ofÄθ1. In polar
coordinates the Poisson problem can equivalently be written as

r 2urr + rur + uθθ = r 2 f in Qθ1, (3)

u = 0 on∂Qθ1, (4)

where

Qθ1 = {(r, θ) : 0< r < 1, 0< θ < θ1}.
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Here we multiplied the transformed Laplace operator byr 2. As we see later this represen-
tation has advantages for preconditioning.

Further, we are interested in the Poisson problem on triangular elements given by

Tθ1 =
{
(x, y) = r

cosθ + t1 sinθ
(cosθ, sinθ) : 0< r < 1, 0< θ < θ1

}
,

where

t1 = tan
θ1

2
.

Tθ1 results fromÄθ1 by mapping the circular boundary to an edge of the triangle. This is
accomplished by the mapping

r → r (θ) = r

cosθ + t1 sinθ
.

Hereby we obtain the third edge which is in(x, y) coordinates, given by

x + t1y = 1.

For instance, forθ1=π/2 we obtaint1= 1 and the straight liney= 1− x. For a fixed radius
r , 0< r < 1, the transform is given byx+ t1y= r and tanθ = y/x. This yields

ux = ur − y

x2+ y2
uθ ,

uxx = urr − 2y

x2+ y2
ur θ + y2

(x2+ y2)2
uθθ + 2xy

(x2+ y2)2
uθ

and

uy = t1ur + x

x2+ y2
uθ ,

uyy = t2
1urr + 2t1

x

x2+ y2
ur θ + x2

(x2+ y2)2
uθθ − 2xy

(x2+ y2)2
uθ .

Hence, the Poisson problem inTθ1 can equivalently be written as(
1+ t2

1

)
(x2+ y2)urr + 2(t1x − y)ur θ + uθθ = (x2+ y2) f in Tθ1 (5)

u = 0 on∂Tθ1, (6)

or

1+ t2
1

(cosθ + t1 sinθ)2
r 2urr + 2

t1 cosθ − sinθ

cosθ + t1 sinθ
rur θ + uθθ = r 2

(cosθ + t1 sinθ)2
f in Qθ1

u = 0 on∂Qθ1.

Therefore, in both cases we are able to transform the Poisson problem onto the rectangle
Qθ1.
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3. SPECTRAL DISCRETIZATION

For the spectral approximation we use a standard Chebyshev collocation scheme. It is
defined on the Chebyshev Gauss–Lobatto nodes given by

(si , t j ) =
(

cos
iπ

N
, cos

jπ

N

)
, i, j = 0, . . . , N.

Hence fast Fourier transforms (FFTs) are available for the efficient evaluation of spectral
derivatives. In the two-dimensional case they can be evaluated inO(N2 log N) arithmetic
operations. These nodes are mapped on(r, θ)∈ (0, 1)× (0, θ1) by the linear transform:

ri = 1

2
(si + 1), θ j = θ1

2
(t j + 1).

By using these nodes in(r, θ) we plot for N= 16 the collocation nodes onÄθ1 for
θ1=π/2, π, 3

2π , andTθ1 for θ1=π/2 in Figs. 1–4. As expected, the nodes are cluster-
ing near the cornerr = 0. Now we present the Chebyshev collocation scheme in the(r, θ)
coordinate system. As usual we employ a Chebyshev approximationuN ∈P0

N , where

P0
N = {p : p polynomial of degree≤N in s, t vanishing on the boundary}.

uN can be written as

uN =
N∑

m,n=0

am,nTm(s)Tn(t), am,n ∈ R,

whereTm(s)= cosm arccoss denotes themth Chebyshev polynomial. The boundary con-
ditions are automatically fulfilled and we require at the(N− 1)2 collocation nodes:(

r 2urr + rur + uθθ
)
(ri , θ j ) = r 2

i f (ri , θ j ) for i, j = 1, . . . , N − 1.

FIG. 1. Collocation nodes inÄπ/2.
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FIG. 2. Collocation nodes inÄπ .

FIG. 3. Collocation nodes inÄ3π/2.

FIG. 4. Collocation nodes inTπ/2.
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Similar collocation conditions are required for Eq. (5). The spectral approximation is now
uniquely determined. The occurring derivativesurr , ur , uθθ can be spectrally evaluated
by using the standard Chebyshev collocation derivatives in the (s, t)-coordinate system.
Obviously, we obtain

ur = 2us, urr = 4uss,

uθ = 2

θ1
ut , uθθ = 4

θ2
1

utt , ur θ = 4

θ1
ust.

The spectral collocation derivative is given byDN = (di, j )i, j=0,...,N (see Canutoet al. [2]),
where

di, j =



ci
cj

(−1)i+ j

si−sj
, i 6= j,

− sj

2(1− s2
j ) , 1≤ i = j ≤ N− 1,

2N2+1
6 , i = j = 0,

− 2N2+1
6 , i = j = N,

and

ci =
{

2, i ∈ {0, N},
1, i = 1, . . . , N− 1.

Partial derivatives can be obtained by means of tensor product representation (⊗) with the
identity matrix IN ; i.e.,

∂

∂r
∼= 2(DN ⊗ IN),

∂2

∂r 2
∼= 4
(
D2

N ⊗ IN
)
,

∂

∂θ
∼= 2

θ1
(IN ⊗ DN),

∂2

∂θ2
∼= 4

θ2
1

(
IN ⊗ D2

N

)
,

∂2

∂r ∂θ
∼= 4

θ1
(DN ⊗ DN).

Now the spectral operators are well defined. For these spectral discretizations we expect the
high spectral accuracy. For smooth (analytical) solutions exponential convergence can be
observed. We tested the accuracy for the following two examples, where the exact solutions
(in the (x, y)-coordinate system) are given by

u(x, y) = xy
(
ex2+y2 − e

)
, θ1 = π/2 (7)

for problem (3) and

u(x, y) = xy(ex+y − e), θ1 = π/2 (8)

for problem (5). We calculated the discreteL2-errorE2 which is given byE2=‖u− uN‖.
From the numerical results in Tables I and II, we observe the exponential decay of the error.
For example (7), the rounding error accuracy is already reached forN= 16. This is due to
the fact that the exponentx2+ y2= r 2 is independent ofθ .
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TABLE I

Results for Example (7)

N E2

4 1.94× 10−3

8 6.62× 10−7

16 7.82× 10−15

32 5.79× 10−15

From the numerical results we observe a uniform resolution over the whole domain.
Clearly, the collocation points are clustering near the corner, but there is nearly no dif-
ference in the error distribution. The nodes are optimal since the original problem on the
triangular element is transformed onto an elliptic problem on the square. On the square it is
well known that Gauss–Lobatto nodes are optimal. A precise convergence analysis is quite
difficult because of the singular coefficients in the differential operator. But from the eigen-
value computations in Section 5 it becomes clear that the spectral operator is numerically
elliptic.

4. SINGULAR SOLUTIONS AND AUXILIARY MAPPINGS

The geometric singularity (corner inr = 0) often gives rise to singular solutions. The
irregularity is due to the fact that the differential equation and the boundary conditions
are not compatible. This usually leads to a singularity in the corner. The accuracy of the
spectral method is then degraded and there is no significant advantage over low-order finite
difference or finite element methods. It is possible, however, to use a priori information
about the behaviour of the singularity in constructing improved schemes. This has been
accomplished by using

• supplementary singular basis functions,
• conformal maps to smooth the singularity,
• domain decomposition techniques or adaptive refinement.

Here we are concerned with auxiliary mappings to smooth the singularity. This technique
was already investigated by Pathria and Karniadakis [13] for the spectral element method.
For certain simple cases, the problem is transformed to a new coordinate system, where
the solution is analytic, and the exponential convergence is recovered. Even when this is
not possible, the singularity is usually much weaker after mapping, so that other treatments
are more effective in the new coordinate system. Such a singularity occurs if for instance

TABLE II

Results for Example (8)

N E2

4 1.89× 10−4

8 8.85× 10−7

16 1.84× 10−11

32 1.78× 10−16
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TABLE III

Results forθ1 = π/2

N ER

4 6.30× 10−5

8 2.08× 10−6

16 4.36× 10−8

32 3.81× 10−10

f ≡−1; i.e.,

−1u = 1 inÄθ1,

u = 0 on∂Äθ1.

We evaluateduN in r = 1
2, θ = θ1/2. The computation was performed forN= 4, 8, 16, 32

andθ1=π/2, π, 3
2π . Since the exact solution is not known we compared the values with

uN for N= 36. ER denotes the error compared to this value. In Tables III, IV, and V we
present the numerical results forθ1=π/2, π, 3

2π .
Only for θ1=π do we observe spectral accuracy. In the other two cases there is no

exponential convergence, due to the singular behaviour of the solution. Forθ1=απ it is
shown (see [13]) that mapping is recommended forα >1/

√
2. Hence forθ1= 3

2π auxiliary
mapping leads to improved accuracy. Forθ1=π/2 there is no improvement. The mapping
introduces new coordinates

ρ = r 1/α, σ = θ

α
for θ1 = απ.

Hence,Qθ1 is mapped ontoQπ , where the geometric singularity has disappeared. It is easily
seen [13] that Eq. (3) is equivalent to

ρ2uρρ + ρuρ + uθθ = α2ρ2α f in Qπ . (9)

Compared to (3) there is only a change in the right-hand side which now leads the singular
behaviour. There is no singularity due to geometry. Typical error estimates in theH1-norm
are presented in [13]:

• without mapping,

‖u− uN‖ ≤ C N−2/α−ε, C > 0;

TABLE IV

Results forθ1 = π

N ER

4 6.05× 10−4

8 3.13× 10−6

16 1.01× 10−9

32 1.85× 10−15
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TABLE V

Results forθ1 = 3
2π

N ER

4 1.87· 10−3

8 1.06· 10−4

16 1.37· 10−5

32 6.11· 10−7

• with mapping,

‖u− uN‖ ≤ C N−4α−ε, C > 0

for any ε >0. Hence forα= 3
2 it is recommended to use mapping with an error decay

proportional toN−6, instead ofN−4/3 without mapping. Forα= 1
2 the mapping technique

leads to somewhat worse results. Without mapping the error decay is proportional toN−4.
These theoretical predictions were fully confirmed by the numerical results presented in the
Tables VI and VII.

Finally, we consider a nonsmooth example, where the right-hand sidef is discontinuous.
We consider Eqs. (3) and (4) withθ1=π/2. The functionf is now defined by

f ≡
{−1, x + y < 1,

0, x + y ≥ 1.
(10)

Hence,f has a discontinuity along the axesx+ y= 1. Since now the solution is not smooth,
no high accuracy can be expected. From the numerical results in Table VIII it can be observed
that a first-order method results. Here no higher accuracy than for finite difference or finite
elements can be achieved.

5. PRECONDITIONING

First, we were interested in the eigenspectrum of the first derivative operators. For the
standard spectral schemes (see [2]) it is well known that the largest eigenvalues scale as
O(N2). For reasons of symmetry the eigenvalues of∂/∂x and∂/∂y are the same. OnÄθ1

TABLE VI

θ1 = π/2 with Mapping

N ER

4 7.54× 10−4

8 3.67× 10−5

16 2.50× 10−6

32 6.36× 10−8
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TABLE VII

θ1 = 3
2π with Mapping

N ER

4 8.56· 10−4

8 6.96· 10−6

16 1.47· 10−9

32 1.75· 10−12

we obtain

ux = cosθur − sinθ

r
uθ ,

uy = sinθur + cosθ

r
uθ .

On Tθ1 we have

ux = ur − cosθ + t1 sinθ

r
sinθuθ ,

uy = t1ur + cosθ + t1 sinθ

r
cosθuθ .

We fixθ1=π/2 and calculate the absolutely maximal eigenvaluesλmax for N= 4, 8, 16, 32.
In Tables IX and X we present the numerical results onÄθ1, Tθ1 for θ1=π/2. OnÄθ1 the
maximal eigenvalues seem to behave asO(N3), whereas onTθ1 asO(N2).

Further we consider finite difference preconditioning for problems (3) and (5). We fix
θ1=π/2. By numerical tests we found that it is better to work with the equations multiplied
by r 2. Another good choice for preconditioning is bilinear finite elements, as proposed
by Deville and Mund [6]. We have more experience with finite differences. Letw denote
a one-dimensional function. The finite difference approximations for the first and second
derivative are given by

w′(sj ) = 0.5(−γ j−1w(sj−1)− (γ j − γ j−1)w(sj )+ γ jw(sj+1)),

w′′(sj ) = 2δ j (γ j−1w(sj−1)− (γ j + γ j−1)w(sj )+ γ jw(sj+1)),

TABLE VIII

Results for Example (10)

N ER

4 6.32× 10−3

8 1.81× 10−3

16 9.56× 10−4

32 4.04× 10−4
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TABLE IX

λmax for ∂/∂x, ∂/∂y on Ωθ1, θ1 = π/2

N λmax λmax/N3

4 1.19× 101 0.19
8 2.01× 101 0.39

16 3.08× 103 0.75
32 4.84× 104 1.48

where

δ j = 1

sj+1− sj−1
,

γ j = 1

sj+1− sj
, j = 1, . . . , N − 1.

The finite difference discretization of Eqs. (3) and (5) can now be derived by tensor prod-
uct representation. In Tables XI and XII we present the absolute value of the minimal
and maximal eigenvaluesλmin andλmax for the spectral operators of Eqs. (3) and (5). The
quantity

cond= λmax

λmin

yields a reasonable approximation of the condition number.
In Tables XIII and XIV we present the corresponding results for the preconditioned

spectral operators. As expected, the condition number is dramatically reduced by precondi-
tioning. It is only slightly increasing inN. This is the typical behaviour which was already
observed for the spectral Laplacian on rectangular domains (see [10, 11]).

6. DOMAIN DECOMPOSITION

Here we consider the patching of a rectangle with a triangle. We solve the problem

1u = f in Äh, (11)

u = g on ∂Äh, (12)

TABLE X

λmax for ∂/∂x, ∂/∂y on Tθ1, θ1 = π/2

N λmax λmax/N2

4 4.00× 100 0.25
8 1.25× 101 0.20

16 4.70× 101 0.18
32 1.83× 102 0.18
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TABLE XI

Results for the Spectral Operator (3)

N λmin λmax Cond

4 4.49 7.59× 101 1.69× 101

8 4.26 1.11× 103 2.59× 102

16 4.16 1.75× 104 4.20× 103

32 4.12 2.79× 107 6.78× 106

TABLE XII

Results for the Spectral Operator (5)

N λmin λmax Cond

4 5.10 1.15× 102 2.26× 101

8 4.58 1.89× 103 4.15× 102

16 4.39 3.07× 104 7.00× 103

32 4.29 4.93× 105 1.15× 105

TABLE XIII

Results for the Preconditioned Operator (3)

N λmin λmax Cond

4 0.63 1.73 2.75
8 0.62 2.13 3.44

16 0.62 2.30 3.73
32 0.62 2.39 3.87

TABLE XIV

Results for the Preconditioned Operator (5)

N λmin λmax Cond

4 0.99 1.71 1.73
8 0.99 2.12 2.13

16 0.80 2.41 3.01
32 0.66 2.83 4.31
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FIG. 5. Shape ofÄh.

where f andg denote given data and

Äh = Tθ1 ∪ R, R= (0, 1)× (−1, 0].

We fix θ1=π/3 so thatÄh has the shape of a house (see Fig. 5). On the interface0= (0, 1)
we use an interface relaxation procedure as proposed by Funaro, Quarteroni, and Zanolli [8].
Here a sequence of Dirichlet–Neumann problems is iterated until convergence. Continuity of
normal derivatives at the interfaces are enforced. The iteration proceeds untilC1 continuity
is achieved to some prescribed tolerance (10−14 in our experiments). The Poisson problem
is solved on each subdomainTθ1 andR. We start withu0

1= u0
2 ≡ 0 and then form= 1, 2, . . .

we iterate as

1um
1 = f in Tθ1,

um
1 = g on ∂Tθ1 − 0,

um
1 = δmum−1

2 + (1− δm)um−1
1 on0

and

1um
2 = f in R,

um
2 = g on ∂R− 0,

∂um
2

∂ν
= ∂um

1

∂ν
on0, ν outer normal,

whereδm denotes the relaxation parameter which is chosen dynamically in order to acceler-
ate the convergence. Usually it is the unique real minimizer of the error between successive
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TABLE XV

Results for Example (13)

N It E21 E22

4 11 5.89× 10−1 3.80× 10−1

8 18 5.49× 10−3 3.59× 10−3

16 25 5.37× 10−8 1.60× 10−8

32 36 8.44× 10−14 4.95× 10−14

iterates and is computed as

δm =
(
em

1 , e
m
1 − em

2

)∥∥em
1 − em

2

∥∥2 ,

where(·, ·) denotes the discreteL2 inner product and

em
i = um

i − um−1
i , i = 1, 2,

is the difference between two iterates on the relevant subdomain. This iteration proceeds
until some prescribed tolerance along the interface (here 10−14). In Table XV we present the
numerical results for an example where the exact solution with nonhomogeneous boundary
conditions is given by

u(x, y) = sin

(
3πx + π

4

)
sin

(
3πy+ π

4

)
, θ1 = π

3
. (13)

It denotes the number of interface relaxations which are necessary until convergence. Af-
terwards the discreteL2 errorsE21, E22 on the subdomainsTπ/3 and R are calculated.
From the numerical results we once more observe exponential convergence of the patched
spectral scheme. Hence, we also found a highly accurate method for domains with five
corners. Clearly, these techniques can be generalized to domains with an odd number of
corners.

7. SUMMARY

By using polar coordinates, the triangular elements are mapped on rectangular domains,
where standard spectral collocation schemes are available. Here a Chebychev collocation
method with Gauss–Labatto nodes in the polar coordinates is employed. Both for smooth
and singular solutions the expected high spectral accuracy is achieved. The accuracy is de-
termined only by the smoothness of the solution. More complicated geometries consisting
of triangular and rectangular subdomains can be treated efficiently by a domain decompo-
sition approach and patching techniques. Here a Dirichlet–Neumann relaxation is iterated
until the continuity of the normal derivatives on the interfaces is achieved.
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